๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

Computer Science

(16)
CS >> Udemy ๊ฐ•์ขŒ ์ •๋ฆฌ 1. It stands for a content division element. It split up or divide your content into separate containers. ์ฆ‰, ํƒœ๊ทธ๋Š” HTML ๋ฌธ์„œ์—์„œ ํŠน์ • ์˜์—ญ(division)์ด๋‚˜ ๊ตฌํš(section)์„ ์ •์˜ํ•  ๋•Œ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. cssํŒŒ์ผ์—์„œ ๋†’์ด๋ฅผ 100px๋กœ ์ •์˜ํ•œ ํƒœ๊ทธ๋ฅผ index.html์— ์ž…๋ ฅํ•ด์ฃผ๋ฉด ์™ผ์ชฝ ๊ทธ๋ฆผ์ฒ˜๋Ÿผ ์ƒˆ๋กœ์šด ์˜์—ญ์ด ์ƒ๊ธฐ๊ฒŒ ๋˜๊ณ , I'm Sophia. a M.S student. ํƒœ๊ทธ ์•ˆ์— ๋‹ค๋ฅธ ์š”์†Œ๋“ค์„ ๋„ฃ์–ด์ฃผ๊ฒŒ ๋˜๋ฉด, ์•„๋ž˜์˜ ์˜ค๋ฅธ์ชฝ ๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด ์ƒˆ๋กœ ์ƒ๊ธด ์˜์—ญ์•ˆ์— ๊ณผ ๋‚ด์šฉ์ด ๋“ค์–ด๊ฐ€๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. I'm Sophia. a M.S student. 1.1 Overriding devault values & mar..
machine learning >> clustering(1) Unsupervised Learning : unsupervise learning์ด๋ผ๋Š” ๋ง์€ supervisor๊ฐ€ ์—†๋‹ค๋Š” ๋œป์ด๋‹ค. ์ฆ‰ input X๋ฅผ ์œ„ํ•œ 'label'์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ข…๋ฅ˜ Density Estimation(KDE): y label์€ ํ•„์š”์—†๊ณ , x data๋งŒ ํ•„์š”ํ•˜๋‹ค. Clustering : kMeans, MoG Dimension Reduction : x data๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ, ๋†’์€ ์ฐจ์›์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋‚ฎ์€ ์ฐจ์›์˜ ๋ฐ์ดํ„ฐ์— projection ํ•ด์ฃผ๋Š” ๊ฒƒ์ด๋‹ค. ์ด๊ฑด 'compression'์ด๋ž‘ ๋น„์Šทํ•˜๋‹ค. Factor analysis: ์ฃผ์–ด์ง„ signal์„ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ๋ฐ์— ์ฃผ์š”์ธ์ด ๋ฌด์—‡์ธ๊ฐ€? Representation Learning Clustering data..
Trainingํ•  ๋•Œ ์˜ค๋ฅ˜์™€ ํ•ด๊ฒฐ๋ฒ•(Dataloader killed, Connection reset by peer, Exception 0 SISKILL) ์ฒ˜์Œ์œผ๋กœ ๊นƒํ—™์—์„œ ๋”ฅ๋Ÿฌ๋‹ ์˜คํ”ˆ์†Œ์Šค๋ฅผ ๋‹ค์šด๋ฐ›์•„ ์‹คํ–‰์„ ํ•˜๋Š” ๊ฒƒ์„ ์‹œ์ž‘์œผ๋กœ ์„ฑ๋Šฅ ๊ฐœ์„ ์„ ์œ„ํ•ด ๊ณต๋ถ€ํ•˜๊ณ  ์—ฐ๊ตฌ(??)ํ•ด ๋ณผ ๊ธฐํšŒ๊ฐ€ ์ƒ๊ฒผ๋‹ค. ํ•˜์ง€๋งŒ ์ œ์ผ ์ฒ˜์Œ ๋‹ค๋ฃจ๊ฒŒ ๋œ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•˜ํ•„ ์—„~์ฒญ ํฐ ๋ฐ์ดํ„ฐ๋ผ ์ •๋ง ๋งŽ์€ ๊ณ ๋น„๋“ค์ด ์žˆ์—ˆ๋‹ค....๐Ÿ˜ญ๐Ÿ˜ญ๐Ÿ˜ญ ๊ทธ๋ƒฅ ๋Œ๋ ค๋ณด๋Š” ๊ฑด๋ฐ... ๋ชจ๋“  ๊ฒŒ ์ฒ˜์Œ์ธ ๋‚˜์—๊ฒŒ ๋„ˆ๋ฌด ๋งŽ์€ ์‹œ๊ฐ„์ด ํ•„์š”ํ•˜๋”๋ผ... ์ง„์งœ ์‹œ์ž‘์กฐ์ฐจ ๋ชปํ–ˆ๋Š”๋ฐ 1. RuntimeError : DataLoader worker (pid ~~) is killed by signal: Killed. ์ง„์‹ฌ ์ด ์˜ค๋ฅ˜๋•Œ๋ฌธ์— ๊ตฌ๊ธ€์— ์น˜๋ฉด ๋‚˜์˜ค๋Š” ๊ธ€์€ ๋ชจ๋‘ ์ฝ์–ด๋ดค๋‹ค. 1.1 ์—๋Ÿฌ์˜ ์›์ธ 1.2 ์‹œ๋„ 1) batch size ์ค„์ด๊ธฐโŒ ๊ตฌ๊ธ€์— ๊ฒ€์ƒ‰ํ•ด๋ณด๋‹ˆ ๊ฐ€์žฅ ๋จผ์ € ๋‚˜์˜ค๋Š” ํ•ด๊ฒฐ๋ฒ•์ด batch size๋ฅผ ์ค„์ด๋ผ๋Š” ๋ง์ด ์žˆ์–ด์„œ 512๋ถ€ํ„ฐ 32๊นŒ์ง€ ์ค„์—ฌ์„œ..
ML&DL_sklearn๊ณต๋ถ€(2) << Iris Data๋ฅผ ์ด์šฉํ•œ ํ•™์Šต๊ณผ ํ‰๊ฐ€ ML&DL_sklearn๊ณต๋ถ€(2). Iris Data๋ฅผ ์ด์šฉํ•œ ํ•™์Šต๊ณผ ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ. from sklearm.dataset import load_iris data = load_iris() ์—ฌ๊ธฐ์„œ load_iris๋Š” ๋ฐ์ดํ„ฐ ๋ฐ ๋ฐ์ดํ„ฐ์˜ ์„ค๋ช…์„ ๋‹ด์€ ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ๋ฐ˜ํ™˜. dictionary๋ฅผ ์•„๋ž˜์˜ ์ฝ”๋“œ๋ฅผ ํ†ตํ•ด ํ™•์ธํ•ด๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ „์ฒ˜๋ฆฌ ๋ฐ EDA np.unique(data.target, return_counts = True) # uniqueํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ˜ํ™˜ํ•ด์ฃผ๊ณ , return_counts๋ฅผ ์„ค์ •ํ•ด์ฃผ๋ฉด ๊ฐฏ์ˆ˜๋„ ๋ฐ˜ํ™˜ํ•ด์ค€๋‹ค. print(data.target_names) #[&#39;setosa&#39; &#39;versicolor&#39; &#39;virginica&#39;] print(data.target..
ML&DL_sklearn๊ณต๋ถ€(1) << Decision Tree sklearn๊ณต๋ถ€(1)-Decision Tree Decision Tree ๋งŒ๋“ค๊ธฐ. import sklearn from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split # ํ•™์Šต๊ณผ ํ…Œ์ŠคํŠธ set์„ ๋‚˜๋ˆ ์ฃผ๋Š” ์—ญํ•  from sklearn.tree import DecisionTreeClassifier data = load_breast_cancer() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, random_state = 42) # ์—ฌ๊ธฐ์„œ random_state = 42๋Š” random seed๋ฅผ ์ค€ ๊ฒƒ์ž„..
๋”ฅ๋Ÿฌ๋‹ ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ >> NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE ๋ฆฌ๋ทฐ ์˜ค๋Š˜์€ NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE์„ ๊ณต๋ถ€ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹น!๐Ÿค“ Introduction Neural machine translation์€ machine translation๋ถ„์•ผ์—์„œ ์ƒˆ๋กœ ๋ฐœ๊ฒฌ๋œ ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ํ•˜๋‚˜์˜, ์ปค๋‹ค๋ž€ ์‹ ๊ฒฝ๋ง์„ ์„ค๊ณ„ํ•˜๊ณ  ํ•™์Šต์‹œํ‚ด์œผ๋กœ์จ ์˜ฌ๋ฐ”๋ฅธ ๋ฒˆ์—ญ์„ ํ•˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ๋ณดํ†ต ์ด๋Ÿฌํ•œ ์‹ ๊ฒฝ๋ง์„ ํ†ตํ•œ ๊ธฐ๊ณ„๋ฒˆ์—ญ์—” ์ธ์ฝ”๋”์™€ ๋””์ฝ”๋”๋กœ ๊ตฌ์„ฑ์ด ๋ฉ๋‹ˆ๋‹ค. ์ธ์ฝ”๋” ์‹ ๊ฒฝ๋ง(encoder nerual network)๋Š” source sentence(๋ฒˆ์—ญํ•ด์•ผ ํ•˜๋Š” ๋ฌธ์žฅ)์„ ๊ณ ์ •๋œ ํฌ๊ธฐ์˜ ๋ฒกํ„ฐ๋กœ ์ธ์ฝ”๋”ฉํ•ด ์ค๋‹ˆ๋‹ค. ๋””์ฝ”๋” ์‹ ๊ฒฝ๋ง์€ ์ธ์ฝ”๋”ฉ๋œ ๋ฒกํ„ฐ๋กœ๋ถ€ํ„ฐ ๋ฒˆ์—ญ์„ ํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋‹ค์Œ, encoder-decoder system์„ ..
๋”ฅ๋Ÿฌ๋‹ >> Sequence Model๊ณผ Attention mechanism(deep learning.ai๊ฐ•์˜) deeplearning.ai์˜ course 5์—์„œ week3๋ฅผ ๊ณต๋ถ€ํ•˜๊ณ  ์ ๋Š” ๋ฆฌ๋ทฐ์ž…๋‹ˆ๋‹นโœ๐Ÿป Basic Models ์–ด๋–ป๊ฒŒ ํ›ˆ๋ จ์‹œํ‚ฌ ๊ฒƒ์ธ๊ฐ€ ์—ฌ๊ธฐ์„œ๋Š” sequence to sequence์— ๋Œ€ํ•ด์„œ ๋ฐฐ์šธ ๊ฒ๋‹ˆ๋‹ค. ๋ณดํ†ต์˜ machine translation problem์—์„œ๋Š” ์ธํ’‹(x)์—๋Š” ์˜์–ด๋ฌธ์žฅ, ์•„์›ƒํ’‹(y)์œผ๋กœ๋Š” ํ”„๋ž‘์Šค์–ด์ธ ๋ฐ์ดํ„ฐ๋กœ ํ›ˆ๋ จ์‹œํ‚ต๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ encoder์™€ decoder ๋‘๊ฐ€์ง€์˜ ๊ตฌ์กฐ๋ฅผ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ encoder๋Š” ์ด์ „์— ๋ฐฐ์šด LSTM์ด๋‚˜ GRU๋ฅผ ์‚ฌ์šฉํ•˜๊ณ , input sequence๋ฅผ ๋ฐ›์œผ๋ฉด ๊ทธ ์ธํ’‹์„ ๋‚˜ํƒ€๋‚ด์ฃผ๋Š” vector๋ฅผ ๋งŒ๋“ค์–ด์ค๋‹ˆ๋‹ค. ์ด ๊ตฌ์กฐ๋Š” image captioning ๊ตฌ์กฐ์™€ ๋น„์Šทํ•ฉ๋‹ˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด image captioning์„ ํ•  ๋–„๋„ ์ธํ’‹์„ ์‚ฌ์ง„์œผ๋กœ ๋ฐ›์œผ๋ฉด ์•„์›ƒํ’‹์œผ..
์‹ค์ „ํ”„๋กœ์ ํŠธ2 >> ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ์„  ๊ณผ์ œ(1) 1. ๋ฌธ์ œ์  ์ข€ ๋” ํญ๋„“์€ ์†Œ๋น„์ž์ธต ์ง€๊ทธ์žฌ๊ทธ๋Š” ๋Œ€ํ•œ๋ฏผ๊ตญ ์—ฌ์„ฑ 10๋Œ€ 20๋Œ€๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๋งŽ์€ ์‚ฌ๋ž‘์„ ๋ฐ›๊ณ  ์žˆ๋Š” ๊ฒƒ์€ ์‚ฌ์‹ค์ด๋ฉฐ, ์ง€๊ทธ์žฌ๊ทธ์™€ ๊ฐ™์€ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ํŠน์„ฑ ์ƒ ์ง€์†์ ์ธ ์ด์šฉ์ž ์ˆ˜ ๋˜ํ•œ ๋ณด์žฅ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์†Œ๋น„์ž์ธต์ด ํ•œ์ •์ ์ด๋‹ค ๋ณด๋‹ˆ ์„ฑ์žฅ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ๊ธฐ๋Œ€๋ฅผ ํ•˜๊ธฐ ์–ด๋ ต๊ธฐ์— ๋” ๋„“์€ ์†Œ๋น„์ž์ธต์„ ํ™•๋ณดํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ๊ฐ€๊ฒฉ๋น„๊ต ์‹œ์Šคํ…œ์˜ ๋ถ€์žฌ ์ง€๊ทธ์žฌ๊ทธ์—์„œ ํŒ๋งค์ค‘์ธ ์ƒํ’ˆ๊ณผ ๊ฐ™์€ ์ƒํ’ˆ์„ ๋„ค์ด๋ฒ„ ์‡ผํ•‘๊ณผ ๊ฐ™์€ ๋‹ค๋ฅธ ์‡ผํ•‘๋ชฐ ์‚ฌ์ดํŠธ์—์„œ ๊ฐ€๊ฒฉ ํ™•์ธ์„ ํ•˜์˜€์„ ๋•Œ ๋” ์‹ผ ๊ฐ€๊ฒฉ์— ํŒ๋งค๋˜๋Š” ๊ฒƒ์„ ์‰ฝ์ง€ ์•Š๊ฒŒ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฌผ๋ก  ์ง€๊ทธ์žฌ๊ทธ์—์„œ ์‰ฝ๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ํŽธ์˜์„ฑ์— ์˜ํ•ด ์‹ ๊ฒฝ ์“ฐ์ง€์•Š๋Š” ์ปค์Šคํ„ฐ๋จธ๋“ค์ด ์กด์žฌํ•˜๊ธฐ๋„ ํ•˜์ง€๋งŒ ์ง€๊ทธ์žฌ๊ทธ์— ๋Œ€ํ•œ ์‹ ๋ขฐ๋„๊ฐ€ ๋–จ์–ด์ ธ ๋” ์ด์ƒ ์ง€๊ทธ์žฌ๊ทธ๋ฅผ ์ฐพ์ง€ ์•Š๋Š” ์ƒํ™ฉ ๋˜ํ•œ ๋ฐœ์ƒํ•œ๋‹ค๊ณ ..