๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

Interest

(38)
Trainingํ•  ๋•Œ ์˜ค๋ฅ˜์™€ ํ•ด๊ฒฐ๋ฒ•(Dataloader killed, Connection reset by peer, Exception 0 SISKILL) ์ฒ˜์Œ์œผ๋กœ ๊นƒํ—™์—์„œ ๋”ฅ๋Ÿฌ๋‹ ์˜คํ”ˆ์†Œ์Šค๋ฅผ ๋‹ค์šด๋ฐ›์•„ ์‹คํ–‰์„ ํ•˜๋Š” ๊ฒƒ์„ ์‹œ์ž‘์œผ๋กœ ์„ฑ๋Šฅ ๊ฐœ์„ ์„ ์œ„ํ•ด ๊ณต๋ถ€ํ•˜๊ณ  ์—ฐ๊ตฌ(??)ํ•ด ๋ณผ ๊ธฐํšŒ๊ฐ€ ์ƒ๊ฒผ๋‹ค. ํ•˜์ง€๋งŒ ์ œ์ผ ์ฒ˜์Œ ๋‹ค๋ฃจ๊ฒŒ ๋œ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•˜ํ•„ ์—„~์ฒญ ํฐ ๋ฐ์ดํ„ฐ๋ผ ์ •๋ง ๋งŽ์€ ๊ณ ๋น„๋“ค์ด ์žˆ์—ˆ๋‹ค....๐Ÿ˜ญ๐Ÿ˜ญ๐Ÿ˜ญ ๊ทธ๋ƒฅ ๋Œ๋ ค๋ณด๋Š” ๊ฑด๋ฐ... ๋ชจ๋“  ๊ฒŒ ์ฒ˜์Œ์ธ ๋‚˜์—๊ฒŒ ๋„ˆ๋ฌด ๋งŽ์€ ์‹œ๊ฐ„์ด ํ•„์š”ํ•˜๋”๋ผ... ์ง„์งœ ์‹œ์ž‘์กฐ์ฐจ ๋ชปํ–ˆ๋Š”๋ฐ 1. RuntimeError : DataLoader worker (pid ~~) is killed by signal: Killed. ์ง„์‹ฌ ์ด ์˜ค๋ฅ˜๋•Œ๋ฌธ์— ๊ตฌ๊ธ€์— ์น˜๋ฉด ๋‚˜์˜ค๋Š” ๊ธ€์€ ๋ชจ๋‘ ์ฝ์–ด๋ดค๋‹ค. 1.1 ์—๋Ÿฌ์˜ ์›์ธ 1.2 ์‹œ๋„ 1) batch size ์ค„์ด๊ธฐโŒ ๊ตฌ๊ธ€์— ๊ฒ€์ƒ‰ํ•ด๋ณด๋‹ˆ ๊ฐ€์žฅ ๋จผ์ € ๋‚˜์˜ค๋Š” ํ•ด๊ฒฐ๋ฒ•์ด batch size๋ฅผ ์ค„์ด๋ผ๋Š” ๋ง์ด ์žˆ์–ด์„œ 512๋ถ€ํ„ฐ 32๊นŒ์ง€ ์ค„์—ฌ์„œ..
EdTech << ๋งž์ถคํ˜• ํ•™์Šต๊ณผ ๊ด€๋ จ๋œ ๊ฐœ๋…&๊ธฐ์ˆ ๋“คโญ๏ธŽ Adaptive Learning(Environment) & Intelligent Adaptive Learning technologies ํ•™์Šต์ž์˜ ์ธํ’‹์— ๋ฐ˜์‘ํ•˜๊ณ , ํ•™์Šต์ž์˜ ํ–‰๋™/ํผํฌ๋จผ์Šค์— ์˜ํ•ด ํ•™์Šต ์ž๋ฃŒ ๋˜๋Š” ํ•™์Šต ์ž๋ฃŒ๋ฅผ ์–ด๋–ป๊ฒŒ ๋ณด์—ฌ์ค„์ง€๋ฅผ ๋ฐ”๊พผ๋‹ค. ํŠนํžˆ LMS๊ฐ€ ์ด๋Ÿฌํ•œ ๊ฐœ๊ฐœ์ธ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๊ด€๋ฆฌํ•˜๊ณ , ์ €์žฅํ•˜๊ณ , trackingํ•˜๋Š”๋ฐ์— ์žˆ์–ด์„œ ๋งŽ์€ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ๋‹ค. Blended Learning ์ด ๋‹จ์–ด๋Š” ๊ต์œกํ•™์—์„œ ๋ณผ ์ˆ˜ ์žˆ๋Š” ๋‹จ์–ด์ธ๋ฐ, ๋ฉด๋Œ€๋ฉด ํ•™์Šต๊ณผ ์›น ๊ธฐ๋ฐ˜ ์˜จ๋ผ์ธ ํ•™์Šต์ด ์„ž์ธ ํ˜•ํƒœ์˜ ํ•™์Šตํ™˜๊ฒฝ์„ ์˜๋ฏธํ•œ๋‹ค. Cognitive Analytics ์ธ๊ฐ„์˜ ๋‡Œ๋ฅผ ๋”ฐ๋ผํ•˜๋ ค๊ณ  ๋…ธ๋ ฅํ•˜๋Š” ๋ถ„์„์— ๋Œ€ํ•œ ๋ถ„์•ผ์ด๋‹ค. Cognitive Learning Systems Cognitive Tutors ํ•™์ƒ๋“ค์ด ๋ฌธ์ œ๋ฅผ ๊ฒช๊ณ  ์žˆ๋Š” ๋ถ€..
ML&DL_sklearn๊ณต๋ถ€(2) << Iris Data๋ฅผ ์ด์šฉํ•œ ํ•™์Šต๊ณผ ํ‰๊ฐ€ ML&DL_sklearn๊ณต๋ถ€(2). Iris Data๋ฅผ ์ด์šฉํ•œ ํ•™์Šต๊ณผ ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ. from sklearm.dataset import load_iris data = load_iris() ์—ฌ๊ธฐ์„œ load_iris๋Š” ๋ฐ์ดํ„ฐ ๋ฐ ๋ฐ์ดํ„ฐ์˜ ์„ค๋ช…์„ ๋‹ด์€ ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ๋ฐ˜ํ™˜. dictionary๋ฅผ ์•„๋ž˜์˜ ์ฝ”๋“œ๋ฅผ ํ†ตํ•ด ํ™•์ธํ•ด๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ „์ฒ˜๋ฆฌ ๋ฐ EDA np.unique(data.target, return_counts = True) # uniqueํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ˜ํ™˜ํ•ด์ฃผ๊ณ , return_counts๋ฅผ ์„ค์ •ํ•ด์ฃผ๋ฉด ๊ฐฏ์ˆ˜๋„ ๋ฐ˜ํ™˜ํ•ด์ค€๋‹ค. print(data.target_names) #[&#39;setosa&#39; &#39;versicolor&#39; &#39;virginica&#39;] print(data.target..
ML&DL_sklearn๊ณต๋ถ€(1) << Decision Tree sklearn๊ณต๋ถ€(1)-Decision Tree Decision Tree ๋งŒ๋“ค๊ธฐ. import sklearn from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split # ํ•™์Šต๊ณผ ํ…Œ์ŠคํŠธ set์„ ๋‚˜๋ˆ ์ฃผ๋Š” ์—ญํ•  from sklearn.tree import DecisionTreeClassifier data = load_breast_cancer() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, random_state = 42) # ์—ฌ๊ธฐ์„œ random_state = 42๋Š” random seed๋ฅผ ์ค€ ๊ฒƒ์ž„..
Education >> ๊ต์œก๊ณผ์ • ๋ฐ ๊ต์œกํ‰๊ฐ€ ์ด์ •๋ฆฌ 2020-1 ๊ต์œก๊ณผ์ • ๋ฐ ํ‰๊ฐ€ ์ˆ˜๊ฐ• ์ •๋ฆฌ๋ณธ
๋”ฅ๋Ÿฌ๋‹ ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ >> NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE ๋ฆฌ๋ทฐ ์˜ค๋Š˜์€ NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE์„ ๊ณต๋ถ€ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹น!๐Ÿค“ Introduction Neural machine translation์€ machine translation๋ถ„์•ผ์—์„œ ์ƒˆ๋กœ ๋ฐœ๊ฒฌ๋œ ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ํ•˜๋‚˜์˜, ์ปค๋‹ค๋ž€ ์‹ ๊ฒฝ๋ง์„ ์„ค๊ณ„ํ•˜๊ณ  ํ•™์Šต์‹œํ‚ด์œผ๋กœ์จ ์˜ฌ๋ฐ”๋ฅธ ๋ฒˆ์—ญ์„ ํ•˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ๋ณดํ†ต ์ด๋Ÿฌํ•œ ์‹ ๊ฒฝ๋ง์„ ํ†ตํ•œ ๊ธฐ๊ณ„๋ฒˆ์—ญ์—” ์ธ์ฝ”๋”์™€ ๋””์ฝ”๋”๋กœ ๊ตฌ์„ฑ์ด ๋ฉ๋‹ˆ๋‹ค. ์ธ์ฝ”๋” ์‹ ๊ฒฝ๋ง(encoder nerual network)๋Š” source sentence(๋ฒˆ์—ญํ•ด์•ผ ํ•˜๋Š” ๋ฌธ์žฅ)์„ ๊ณ ์ •๋œ ํฌ๊ธฐ์˜ ๋ฒกํ„ฐ๋กœ ์ธ์ฝ”๋”ฉํ•ด ์ค๋‹ˆ๋‹ค. ๋””์ฝ”๋” ์‹ ๊ฒฝ๋ง์€ ์ธ์ฝ”๋”ฉ๋œ ๋ฒกํ„ฐ๋กœ๋ถ€ํ„ฐ ๋ฒˆ์—ญ์„ ํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋‹ค์Œ, encoder-decoder system์„ ..
๋”ฅ๋Ÿฌ๋‹ >> Sequence Model๊ณผ Attention mechanism(deep learning.ai๊ฐ•์˜) deeplearning.ai์˜ course 5์—์„œ week3๋ฅผ ๊ณต๋ถ€ํ•˜๊ณ  ์ ๋Š” ๋ฆฌ๋ทฐ์ž…๋‹ˆ๋‹นโœ๐Ÿป Basic Models ์–ด๋–ป๊ฒŒ ํ›ˆ๋ จ์‹œํ‚ฌ ๊ฒƒ์ธ๊ฐ€ ์—ฌ๊ธฐ์„œ๋Š” sequence to sequence์— ๋Œ€ํ•ด์„œ ๋ฐฐ์šธ ๊ฒ๋‹ˆ๋‹ค. ๋ณดํ†ต์˜ machine translation problem์—์„œ๋Š” ์ธํ’‹(x)์—๋Š” ์˜์–ด๋ฌธ์žฅ, ์•„์›ƒํ’‹(y)์œผ๋กœ๋Š” ํ”„๋ž‘์Šค์–ด์ธ ๋ฐ์ดํ„ฐ๋กœ ํ›ˆ๋ จ์‹œํ‚ต๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ encoder์™€ decoder ๋‘๊ฐ€์ง€์˜ ๊ตฌ์กฐ๋ฅผ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ encoder๋Š” ์ด์ „์— ๋ฐฐ์šด LSTM์ด๋‚˜ GRU๋ฅผ ์‚ฌ์šฉํ•˜๊ณ , input sequence๋ฅผ ๋ฐ›์œผ๋ฉด ๊ทธ ์ธํ’‹์„ ๋‚˜ํƒ€๋‚ด์ฃผ๋Š” vector๋ฅผ ๋งŒ๋“ค์–ด์ค๋‹ˆ๋‹ค. ์ด ๊ตฌ์กฐ๋Š” image captioning ๊ตฌ์กฐ์™€ ๋น„์Šทํ•ฉ๋‹ˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด image captioning์„ ํ•  ๋–„๋„ ์ธํ’‹์„ ์‚ฌ์ง„์œผ๋กœ ๋ฐ›์œผ๋ฉด ์•„์›ƒํ’‹์œผ..
EdTech >> Reference for who are interested in EdTech & Learning Science www.neilheffernan.net/publications Publications WP23 Wilson, K., Xiong, X., Khajah, M., Lindsey, R. V., Zhao, S., Karklin, K., Van Inwegen, E., Han, B., Ekanadham, C., Beck, J., Heffernan, N., & Mozer, M., (2016) Estimating student proficiency: Deep learning is not the panacea. Submission to the NIPS 20 sites.google.com learnlab.org LearnLab – Part of the Simon Initiative learnlab.org www.ucl.ac..